Section 2-1, Mathematics 108

Functions

Some Definitions:

1) In it's most general sense the term function a mapping of elements between two sets.

Given the set $A=\{1,2,3\}$ and $B=\{4,5,6\}$

We use the script letter f to mean the function that takes elements from A to B

$$
\begin{gathered}
x \rightarrow f(x) \\
\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \rightarrow\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right)
\end{gathered}
$$

Note that each element x of A is mapped to exactly one element of B.
It is quite permissible for more than one element of A to be mapped to the same element of B.
$x \rightarrow f(x)$
$\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right) \rightarrow\left(\begin{array}{l}4 \\ 4 \\ 4\end{array}\right)$
The following is not a function, why?
$\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right) \rightarrow\left(\begin{array}{l}4 \\ 5 \\ 5\end{array}\right)$
2) The set A is known as the Domain of the function.
3) The symbol $\boldsymbol{f}(\boldsymbol{x})$ is called the value of \boldsymbol{f} at \boldsymbol{x}, or the image of \boldsymbol{x}.
4) The set of all the $f(x)^{\prime}$ s, $\{f(x) \mid x \in A\}$ is called the range of \boldsymbol{f}.
5) We call a variable such as x that represents an element of A the independent variable.
6) We call a variable that represents $f(x)$ the dependent variable.

So if we write
$y=f(x)$
x is the independent variable and y is the dependent variable.

Some Notes

1) The sets A and B can be the same set.
2) Two functions could have the same mapping but be different functions.

Example:
The identity mapping is a mapping from a set A onto itself.
It is the mapping where for all $x \in A, f(x)=x$.
Note that the identity mapping on the integers and the identity mapping on the real numbers are two different functions.
3) We most often use the notation $f(x)$ to mean a function, but when we are dealing with more than one function, we may use $g(x), h(x)$ or any other convenient letter or letters.

Ways to describe a function

1) Verbally

Example:
"The function which maps each student-id at USF to that particular Student".
In this case A is as set of student-id numbers and B is the set of students at USF.
2) Using a specific listing

x	$f(x)$
1	3
2	9
3	27

2) Using a table

Cost to send a 1st class letter in the US

ounces	price
≤ 1 ounce	.49
>1 and ≤ 2 ounces	.70
>2 and ≤ 3 ounces	.91

3) Using an algebraic expression

An example is a function that returns the area of a circle given it's radius.

$$
A(r)=\pi r^{2}
$$

Note that without explicitly knowing the domain of this function, we can assume it consists of all valid real numbers greater than 0 .

This will be one of the most commonly used ways to describe a function
4) Using a Piecewise definition

Here is an example:

$$
C(x)=\left\{\begin{array}{cc}
39 & 0 \leq x \leq 2 \\
39+15(x-2) & x>2
\end{array}\right.
$$

5) Using a graph

Note that it would not be possible to describe this function completely using a listing.

Evaluating a function described algebraically

If we have a function

$$
f(x)=3 x^{2}+x-5
$$

that we want to evaluate at $x=2$, we just plug in the value to the expression. We can write this as follows:
$f(2)=3(2)^{2}+2-5=9$
so
$f(2)=9$

More on the domain of a function

Like the domain of an algebraic expression, the domain of a function may be stated explicitly, eg.

$$
f(x)=x^{2} \quad 0 \leq x \leq 5
$$

If the domain is not otherwise stated, we assume it is a maximal subset of the reals. That is the domain is the reals minus any values that are undefined.

Example:
a) $f(x)=\frac{1}{x(x-1)}$ What is the domain?
b) $g(x)=\sqrt{9-x^{2}}$ What is the domain?
c) $h(t)=\frac{t}{\sqrt{t+1}}$ What is the domain?

